Acute acoustic trauma (AAT) results in oxidative stress to the cochlea through overproduction of cellular reactive oxygen, nitrogen, and other free radical species appearing from 1 h to 10 days after noise exposure. It has been shown that N-acetyl-L-cysteine (NAC), a glutathione prodrug, and acetyl-L-carnitine (ALCAR), a mitochondrial biogenesis agent, are effective in reducing noise-induced hearing loss. Phenyl N-tertbutylnitrone (PBN), a nitrone-based free radical trap, appears to suppress oxidative stress in a variety of disorders and several biological models. In this study, we tested whether 4-hydroxy PBN (4-OHPBN), a major metabolite of PBN, administered 4 h after noise exposure is effective in treating noise-induced hearing loss and whether a combination of antioxidant drugs (4-OHPBN plus NAC and 4-OHPBN plus NAC plus ALCAR) provides greater efficacy in attenuating AAT since each agent addresses different injury mechanisms. Chinchilla were exposed to a 105 dB octave-band noise centered at 4 kHz for 6 h. 4-OHPBN and combinations of antioxidant drugs were intraperitoneally administered beginning 4 h after noise exposure. Hearing threshold shifts in auditory brainstem responses and missing outer hair cell counts were obtained. 4-OHPBN reduced threshold shifts in a dose-dependent manner while both drug combinations showed greater effects. These results demonstrate that 4-OHPBN and combinations of antioxidants can effectively treat acute acoustic trauma and drug combinations may increase the effectiveness of treatment and decrease the required individual medication dose.

Please follow and like us: